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About Liaisons 

• PhD-level scientists with expertise in computation 
–  Astrophysics, biology, chemistry, climate, computer science, 

engineering, materials science, mathematics, nuclear physics, 
plasma physics, etc. 

–  Experienced computational scientists with one thing in common 

•  Liaisons matched with INCITE projects based on science, 
mathematical, and algorithmic expertise 
–  Can’t always match for science first, e.g., I am not a chemist, but I 

am familiar with their math and algorithms 

• Our motto: Whatever it takes! 
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Liaison Role 

•  Liaisons are collaborators whose unique expertise with 
leadership-level computers will enhance your experience 
and help you get more science done 

•  Levels of liaison support 
–  Level 1: User support + 
–  Level 2: Paratrooper – fix a specific problem in your code, O(1 

month) 
–  Level 3: Embedded member of code development team and 

science collaborator 
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Liaison Role 

•  Typical liaison activities 
–  Profile code performance, providing feedback to code team 
–  Code porting 
–  Implement solutions to problems experienced by application 

scientists 
–  Advocate for users regarding tools, libraries, etc. 
–  Collaborate scientifically 
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Scientific Computing Success Stories 

• Recent successes, chosen to illustrate our typical tasks 
• Many more success stories where these came from 
• Next year: your code? 
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Code Profiling 

• Code profiling: similar to energy audit of your home 
–  Look at code’s behavior, find bottlenecks, time sinks (leaking 

windows, old weather stripping) 
–  Make recommendations for improvements to your code (replace 

windows, install a new water heater) 

•  Tools we typically use for this (you can try it too!): 
–  Vampir and VampirTrace 
–  Craypat 
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VampirTrace/Vampir 

• VampirTrace: instrument code to produce trace files 
–  Compile with VT wrapper, run code and obtain trace output files 

• Vampir: use to visualize trace 
–  Run in interactive job of nearly same size as job that produced 

trace files 
–  Server on interactive job serves as analysis engine to local front-

end 
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CrayPAT 

• Package for instrumenting and tracing codes on Cray 
systems 

• Run instrumented code to obtain overview of code behavior 
• Re-run with refined profiling, to trace most important 

subroutines 
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Code Profiling: Example 1 (Bigstick) 

•  I profiled Bigstick, a configuration interaction nuclear physics 
code 

• Promising for large-scale nuclear configuration calculations, 
because it does not require as much memory 

• But, does not scale well 
• My task: find out why 
• Used Vampir/VampirTrace to create graphical representation 

of code performance 
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Top-Level Overview 
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Three Steps within Triangle 
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Block Reduce Phase 
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Bigstick: Analysis 

•  Triangular pattern in overview reminiscent of sequential 
algorithm applied across processors 
–  Digging deeper shows in orthogonalization phase, processors held 

up by single processor writing to Lanczos vector file 
–  Suggestion: reduce amount of orthogonalization performed 

• Disproportionate time spent in MPI_Barrier (~30%) 
–  Indicative of load imbalance 
–  Barriers are within clocker subroutine, used for performance 

timings, obscuring evidence of load imbalance 

• Majority of time in block reduce phase spent in 
MPI_Allreduce 
–  Combining Allreduces could improve performance 
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Code Profiling: Example 2 

• We first profiled j-coupled version of NUCCOR with CrayPat 
• Discovered it spent >50% of its time sorting in test 

benchmark 
–  Found it was using highly inefficient bubble-sort-like algorithm 
–  Replaced “Frankenstein sort” with heapsort, reduced sorting to 

~3% of time 

• Asked collaborators what they were sorting, and why? 
–  Their response: “We’re sorting something?” 

• Removed sorting altogether, code worked just fine, and ran 
30% faster on long benchmark 
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Code Profiling: Example 2 (continued) 

• We next profiled standard version 
• Discovered it spent nearly 70% of time in single subroutine: 
t2_eqn_store_p_or_n 

•  This subroutine became focus of subsequent work with 
NUCCOR 
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Code Porting 

• Wayne Joubert, Denovo 
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What is Denovo? 
•  Denovo is a radiation transport code used in 

advanced nuclear reactor design 
•  It solves for the density of particle flux in a 3-D 

spatial volume such as a reactor 
•  In particular, it solves the six-dimensional linear 

Boltzmann equation (3-space, 2-angle, 1-energy) 
•  Denovo scales up to 200K cores on ORNL’s 2.3PF 

Jaguar system. 
•  It is part of the CASL project (Consortium for 

Advanced Simulation of Light Water Reactors) and 
the SCALE code system (Standardized Computer 
Analyses for Licensing Evaluation) 

•  It was selected as an early port code for Titan 
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Denovo Algorithms 
•  Primary algorithms: the discrete ordinates 

method, 3-D sweep, GMRES linear solver and 
various eigensolvers, e.g., Arnoldi 

•  The execution time profile has a very prominent 
peak: nearly all the execution time (80-99%) is 
spent in a 3-D sweep algorithm. 

•  Because of this, the 3-D sweep must be the 
central focus of any effort to port Denovo to a 
accelerator-based system 

•  However, the sweep is a complex algorithm that 
is difficult to parallelize efficiently. 
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3-D Sweep Algorithm: Description 
•  Denovo is based on a 3-D structured grid 
•  The data dependency for the sweep operation is 

specified by a 4-point stencil 
•  The result at every gridcell is dependent on the 

result at the immediately lower gridcells in X, Y 
and Z. 

•  This induces a wavefront computation pattern – a 
sequence of diagonal planes sweeping in from a 
corner. 

•  Thus, results at the far side of the grid cannot be 
computed until results at the near side are 
completed 

•  For standard parallel grid decompositions, most 
of the processors will be idle much of the time 
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How to Program the Sweep on the GPU? 

•  Sweep is a complex algorithm, with many dimensions.  Directives may 
not be flexible enough or expose enough hardware functionality to get the 
needed performance. 

•  NVIDIA support OpenCL, but going forward CUDA will be better 
supported and more in-sync with new hardware features. 

•  Thus use CUDA.  Use C++ for consistency with Denovo base language. 

•  Decide what language / parallel API to use to program the GPU. 
•  Options: 

1.  CUDA: a minor extension of C/C++ for GPU thread programming, 
also available for Fortran 90 

2.  OpenCL: a multi-vendor standard similar to CUDA 
3.  Compiler directives: similar to OpenMP (PGI, CAPS, Cray, ...) 
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Mapping the Algorithm to the GPU 
We have many candidate dimensions for parallelism: 
space (3), energy, moment/angle, octant, and also 
unknown (4 unknowns per gridcell for this 
discretization). 
We are told by NVIDIA that we need 4K-8K threads for 
the GPU to keep all GPU streaming multiprocessors 
busy and cover various latencies. 
Also need the right kind of parallelism – proper 
decoupling of data. 
Also must have good memory access patterns (reuse of 
data loaded from global memory, coalesced stride-1 
memory references, good use of registers, shared 
memory, caches on the GPU). 
Approach: explore each problem dimension for 
potential thread parallelism. 
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1. Parallelism in Energy  
•  Denovo exposes energy as a parallel dimension. 
•  Values for different energies are entirely independent in the 3-D sweep, 

thus the algorithm is embarrassingly parallel along this axis (!). 
•  Model problem has 256 energy groups – this helps, but we need to look 

further in order to get to 4K-8K threads. 
•  Also need to use some of this 256 for node parallelism. 
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2. Parallelism in Octant  
•  Algorithm requires sweeps from 8 different directions. 
•  Sweep directions are independent, thus another 8X thread parallelism (!). 
•  Small issue: different octants update the same output vector, so we need 

to schedule properly to avoid write conflicts. 
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3. Parallelism in Space  

•  We have this recursion, as mentioned before, that makes the 
computations non-independent. 

•  However, the global KBA algorithm can be applied at this small scale (!). 
•  Set up block wavefronts, assign blocks to threads. 
•  Sync between block wavefronts. 
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Performance  

•  With this parallelization scheme, code performed at only about 1% of 
peak flop rate, much lower than predicted by the performance model 

•  Reason: excessive use of registers caused spillage to main memory, thus 
poor performance 

•  Needed to find more/better axes of parallelism 
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4. Parallelism in Angle, Moment 

•  A new strategy to parallelize the moment/angle axes at the gridcell level 
– map these axes to CUDA threads in-warp. 

•  Small dense matrix-vector products are perfect for thread parallelism – 
store vector in shared memory, relieve the register pressure. 

•  The two small matrices are the same across all gridcells (!), so they can 
be retained in L1 cache, to reduce a potentially high source of memory 
traffic. 
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Summary of Mapping of Dimensions 

GPU 
Compute 
Hierarchy    

Thread 
 

 Warp 
  

Thread 
  block  

 Grid  
  

registers 32 threads 
execute in 
lockstep 

up to 48 warps 
access shared memory; 

can sync warps 

fully independent 
threadblocks 

Denovo 
Problem 
Dimensions 

octant 
energy 

fully 
decoupled 

space 
use KBA; 
need sync 

moment 
angle 
use 

threads 
in a warp 

per-gridcell 
unknowns 

tightly 
coupled 
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Results: Test Problem 

•  32x32x128 gridcells 
•  16 energy groups 
•  16 moments 
•  256 angles 
•  Linear discontinuous elements – 

4 unknowns per gridcell 
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Results: Sweep GPU Performance 

AMD	  Istanbul	  	  1	  
core	  

NVIDIA	  C2050	  
Fermi	  

Ra<o	  

Kernel	  compute	  -me	   171	  sec	   3.2	  sec	   54X	  
PCIe-‐2	  -me	  (faces)	   -‐-‐	   1.1	  sec	  

TOTAL	   171	  sec	   4.2	  sec	   40X	  

•  Single core (AMD Istanbul) / single GPU (Fermi C2050) comparison 
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NVIDIA Fermi is 40X faster 
than single Opteron core 
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Observations 

•  40X faster than Istanbul core. 
•  Istanbul is 6-core, so Fermi about 7X faster than the entire Istanbul processor. 
•  For both CPU and GPU, code attains about 10% of peak flop rate – this is 

considered good for this algorithm. 
•  Expect more optimizations to be possible going forward. 
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Solving Code Problems 

• Valentine and VPIC 
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VPIC 

•  3-D electromagnetic relativistic particle-in-cell simulation 
code 

•  Ticket came in about VPIC failing at high core counts 
•  I asked newest colleague Valentine Anantharaj to take a 

look, with support from two experienced liaisons (Hai Ah 
Nam and myself) 

• With Hai Ah’s help, he isolated location of failure 
•  Libraries were incompatible because of version changes; 

recompiling with fresh environment and proper modules 
loaded eliminated the error 
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User Advocates 

• Markus and Vasp 
• Queue priority 
• Software needs 
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VASP 

• Vienna Ab-initio Simulation Package 
•  Licensed software, builds maintained by Markus Eisenbach 
• Optimized builds that run more efficiently on Jaguar 
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Queue Priority 

•  Liaisons have science-area expertise, and understand 
unique needs of users 

• Advocate and explain why exception is needed 
• Advocate for users whose allocations have been exhausted 
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Software Needs 

• Advocate for users’ software needs 
• Serve as translator between projects and Resource 

Utilization Council (RUC) 
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Scientific Collaboration 

• Hai Ah Nam, Nuclear Physics 
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Nuclear Physics 

• Germanium-72 experiences at least 2 phase 
transitions 

• Phase transitions a function of pairing of neutrons, 
rotation of nucleus, and temperature 

• Reminiscent of superconductors 
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Nuclear Physics 

•  Studying Carbon-14 half-life with three-body interactions 
–  Easy and cheap to approximate nuclear forces with two-body interactions 

(p+p, p+n, n+n) 
–  For better accuracy, need three-body interactions (3p, 2p+1n, 1p+2n, 3n) 

– using 2-body only underestimates half-life 
–  BUT, adding 3-body interactions adds significant computational cost and 

memory requirements 
–  Fortunately, on Jaguar this calculation is possible 
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Visualizing Spontaneous Fission of 
Heavy Nuclei 

• Collaboration with A. 
Staszczak, UT/
Warsaw 

• Project of summer 
student Elizabeth 
Morris 

•  In collaboration with 
visualization liaisons 
Dave Pugmire, Sean 
Ahern, Ross Toedte 
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Spontaneous Fission of Fermium-258 
• Unusual, unexpected deformation of nucleus 
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Conclusions 

•  Liaisons are a valuable resource for INCITE projects 
•  Liaisons have unique HPC skills that projects can take 

advantage of 
• Whatever it takes! 
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